Source code for distil.active_learning_strategies.fass

from .entropy_sampling import EntropySampling
from .least_confidence_sampling import LeastConfidenceSampling
from .margin_sampling import MarginSampling
from .submod_sampling import SubmodularSampling
from .strategy import Strategy

from torch.utils.data import Subset

[docs]class FASS(Strategy): """ Implements FASS :footcite:`pmlr-v37-wei15` combines the uncertainty sampling method with a submodular data subset selection framework to label a subset of data points to train a classifier. Here the based on the ‘top_n’ parameter, ‘top_n*budget’ most uncertain parameters are filtered. On these filtered points one of the submodular functions viz. 'facility_location' , 'feature_based', 'graph_cut', 'log_determinant', 'disparity_min', 'disparity_sum' is applied to get the final set of points. We select a subset :math:`F` of size :math:`\\beta` based on uncertainty sampling, such that :math:`\\beta \\ge k`. Then select a subset :math:`S` by solving .. math:: \\max \\{f(S) \\text{ such that } |S| \\leq k, S \\subseteq F\\} where :math:`k` is the is the `budget` and :math:`f` can be one of these functions - 'facility_location' , 'feature_based', 'graph_cut', 'log_determinant', 'disparity_min', 'disparity_sum'. Parameters ---------- labeled_dataset: torch.utils.data.Dataset The labeled training dataset unlabeled_dataset: torch.utils.data.Dataset The unlabeled pool dataset net: torch.nn.Module The deep model to use nclasses: int Number of unique values for the target args: dict Specify additional parameters - **batch_size**: The batch size used internally for torch.utils.data.DataLoader objects. (int, optional) - **device**: The device to be used for computation. PyTorch constructs are transferred to this device. Usually is one of 'cuda' or 'cpu'. (string, optional) - **loss**: The loss function to be used in computations. (typing.Callable[[torch.Tensor, torch.Tensor], torch.Tensor], optional) - **submod_args**: Parameters for the submodular selection as described in SubmodularSampling (dict, optional) - **uncertainty_measure**: Describes which measure of uncertainty should be used. This should be one of 'entropy', 'least_confidence', or 'margin' (string, optional) """ def __init__(self, labeled_dataset, unlabeled_dataset, net, nclasses, args={}): super(FASS, self).__init__(labeled_dataset, unlabeled_dataset, net, nclasses, args) if 'submod_args' in args: self.submod_args = args['submod_args'] else: self.submod_args = {'submod': 'facility_location', 'metric': 'cosine'} self.args['submod_args'] = self.submod_args if 'uncertainty_measure' in args: self.uncertainty_measure = args['uncertainty_measure'] else: self.uncertainty_measure = 'entropy'
[docs] def select(self, budget, top_n=5): """ Selects next set of points Parameters ---------- budget: int Number of data points to select for labeling top_n: int, optional Number of slices of size budget to include in filtered subset Returns ---------- idxs: list List of selected data point indices with respect to unlabeled_dataset """ self.model.eval() # Determine if top_n * budget points can be drawn; otherwise, set filtered set size # to be the size of the unlabeled_dataset filtered_set_size = min(budget * top_n, len(self.unlabeled_dataset)) # Now, select the top 'filtered_set_size' most uncertain points using the # specified measure of uncertainty (already implemented in strategies!) if self.uncertainty_measure == 'entropy': uncertainty_strategy = EntropySampling(self.labeled_dataset, self.unlabeled_dataset, self.model, self.target_classes, self.args) elif self.uncertainty_measure == 'least_confidence': uncertainty_strategy = LeastConfidenceSampling(self.labeled_dataset, self.unlabeled_dataset, self.model, self.target_classes, self.args) elif self.uncertainty_measure == 'margin': uncertainty_strategy = MarginSampling(self.labeled_dataset, self.unlabeled_dataset, self.model, self.target_classes, self.args) else: raise ValueError("uncertainty_measure must be one of 'entropy', 'least_confidence', or 'margin'") filtered_idxs = uncertainty_strategy.select(filtered_set_size) # Now, use submodular selection to choose points from the filtered subset. # Ensure the representation type is in the submod_args dict. if 'representation' not in self.submod_args: self.submod_args['representation'] = 'linear' filtered_unlabeled_set = Subset(self.unlabeled_dataset, filtered_idxs) submodular_selection_strategy = SubmodularSampling(self.labeled_dataset, filtered_unlabeled_set, self.model, self.target_classes, self.args) greedy_indices = submodular_selection_strategy.select(budget) # Lastly, map the indices of the filtered set to the indices of the unlabeled set selected_indices = [filtered_idxs[x] for x in greedy_indices] return selected_indices